Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 821
Filtrar
1.
Front Neurorobot ; 18: 1393738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644902

RESUMO

Due to the heavy burden on human drivers when remotely controlling hexapod robots in complex terrain environments, there is a critical need for robot intelligence to assist in generating control commands. Therefore, this study proposes a mapping process framework that generates a combination of human-robot commands based on decision target values, focusing on the task of robot intelligence assisting drivers in generating human-robot command combinations. Furthermore, human-robot state constraints are quantified as geometric constraints on robot motion and driver fatigue constraints. By optimizing and filtering the feasible set of human-robot commands based on human-robot state constraints, instruction combinations are formed and recommended to the driver in real-time, thereby enhancing the efficiency and safety of human-machine coordination. To validate the effectiveness of the proposed method, a remote human-robot collaborative driving control system based on wearable devices is designed and implemented. Experimental results demonstrate that drivers utilizing the human-robot command recommendation system exhibit significantly improved robot walking stability and reduced collision rates compared to individual driving.

2.
Transplantation ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632678

RESUMO

BACKGROUND: Although it is acknowledged that ischemia-reperfusion injury is the primary pathology of cold storage-associated kidney transplantation, its underlying mechanism is not well elucidated. METHODS: To extend the understanding of molecular events and mine hub genes posttransplantation, we performed bulk RNA sequencing at different time points (24 h, day 7, and day 14) on a murine kidney transplantation model with prolonged cold storage (10 h). RESULTS: In the present study, we showed that genes related to the regulation of apoptotic process, DNA damage response, cell cycle/proliferation, and inflammatory response were steadily elevated at 24 h and day 7. The upregulated gene profiling delicately transformed to extracellular matrix organization and fibrosis at day 14. It is prominent that metabolism-associated genes persistently took the first place among downregulated genes. The gene ontology terms of particular note to enrich are fatty acid oxidation and mitochondria energy metabolism. Correspondingly, the key enzymes of the above processes were the products of hub genes as recognized. Moreover, we highlighted the proximal tubular cell-specific increased genes at 24 h by combining the data with public RNA-Seq performed on proximal tubules. We also focused on ferroptosis-related genes and fatty acid oxidation genes to show profound gene dysregulation in kidney transplantation. CONCLUSIONS: The comprehensive characterization of transcriptomic analysis may help provide diagnostic biomarkers and therapeutic targets in kidney transplantation.

3.
FASEB J ; 38(7): e23583, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38551634

RESUMO

We have recently demonstrated that Jumonji domain-containing protein D3 (JMJD3), a histone demethylase of histone H3 on lysine 27 (H3K27me3), is protective against renal fibrosis, but its role in acute kidney injury (AKI) remains unexplored. Here, we report that JMJD3 activity is required for renal protection and regeneration in murine models of AKI induced by ischemia/reperfusion (I/R) and folic acid (FA). Injury to the kidney upregulated JMJD3 expression and induced expression of H3K27me3, which was coincident with renal dysfunction, renal tubular cell injury/apoptosis, and proliferation. Blocking JMJD3 activity by GSKJ4 led to worsening renal dysfunction and pathological changes by aggravating tubular epithelial cell injury and apoptosis in both murine models of AKI. JMJD3 inhibition by GSKJ4 also reduced renal tubular cell proliferation and suppressed expression of cyclin E and phosphorylation of CDK2, but increased p21 expression in the injured kidney. Furthermore, inactivation of JMJD3 enhanced I/R- or FA-induced expression of TGF-ß1, vimentin, and Snail, phosphorylation of Smad3, STAT3, and NF-κB, and increased renal infiltration by F4/80 (+) macrophages. Finally, GSKJ4 treatment caused further downregulation of Klotho, BMP-7, Smad7, and E-cadherin, all of which are associated with renal protection and have anti-fibrotic effects. Therefore, these data provide strong evidence that JMJD3 activation contributes to renal tubular epithelial cell survival and regeneration after AKI.


Assuntos
Injúria Renal Aguda , Histonas , Animais , Camundongos , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Proliferação de Células , Histonas/metabolismo , Rim/metabolismo , Fosforilação
4.
Kidney Int ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38521405

RESUMO

Epigenetic regulations, including DNA methylation, are critical to the development and progression of kidney fibrosis, but the underlying mechanisms remain elusive. Here, we show that fibrosis of the mouse kidney was associated with the induction of DNA methyltransferases and increases in global DNA methylation and was alleviated by the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-Aza). Genome-wide analysis demonstrated the hypermethylation of 94 genes in mouse unilateral ureteral obstruction kidneys, which was markedly reduced by 5-Aza. Among these genes, Hoxa5 was hypermethylated at its gene promoter, and this hypermethylation was associated with reduced HOXA5 expression in fibrotic mouse kidneys after ureteral obstruction or unilateral ischemia-reperfusion injury. 5-Aza prevented Hoxa5 hypermethylation, restored HOXA5 expression, and suppressed kidney fibrosis. Downregulation of HOXA5 was verified in human kidney biopsies from patients with chronic kidney disease and correlated with the increased kidney fibrosis and DNA methylation. Kidney fibrosis was aggravated by conditional knockout of Hoxa5 and alleviated by conditional knockin of Hoxa5 in kidney proximal tubules of mice. Mechanistically, we found that HOXA5 repressed Jag1 transcription by directly binding to its gene promoter, resulting in the suppression of JAG1-NOTCH signaling during kidney fibrosis. Thus, our results indicate that loss of HOXA5 via DNA methylation contributes to fibrogenesis in kidney diseases by inducing JAG1 and consequent activation of the NOTCH signaling pathway.

5.
Front Pharmacol ; 15: 1387592, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510650

RESUMO

[This corrects the article DOI: 10.3389/fphar.2022.918732.].

6.
Clin Sci (Lond) ; 138(6): 351-369, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38411015

RESUMO

Septic acute kidney injury (AKI) is a severe form of renal dysfunction associated with high morbidity and mortality rates. However, the pathophysiological mechanisms underlying septic AKI remain incompletely understood. Herein, we investigated the signaling pathways involved in septic AKI using the mouse models of lipopolysaccharide (LPS) treatment and cecal ligation and puncture (CLP). In these models, renal inflammation and tubular cell apoptosis were accompanied by the aberrant activation of the mechanistic target of rapamycin (mTOR) and the signal transducer and activator of transcription 3 (STAT3) signaling pathways. Pharmacological inhibition of either mTOR or STAT3 significantly improved renal function and reduced apoptosis and inflammation. Interestingly, inhibition of STAT3 with pharmacological inhibitors or small interfering RNA blocked LPS-induced mTOR activation in renal tubular cells, indicating a role of STAT3 in mTOR activation. Moreover, knockdown of STAT3 reduced the expression of the phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1/p85α), a key subunit of the phosphatidylinositol 3-kinase for AKT and mTOR activation. Chromatin immunoprecipitation assay also proved the binding of STAT3 to PIK3R1 gene promoter in LPS-treated kidney tubular cells. In addition, knockdown of PIK3R1 suppressed mTOR activation during LPS treatment. These findings highlight the dysregulation of mTOR and STAT3 pathways as critical mechanisms underlying the inflammatory and apoptotic phenotypes observed in renal tubular cells during septic AKI, suggesting the STAT3/ PIK3R1/mTOR pathway as a therapeutic target of septic AKI.


Assuntos
Injúria Renal Aguda , Sepse , Animais , Camundongos , Injúria Renal Aguda/metabolismo , Apoptose , Inflamação/metabolismo , Rim/metabolismo , Lipopolissacarídeos , Sepse/complicações , Sepse/metabolismo , Sirolimo/uso terapêutico , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo
7.
Am J Physiol Renal Physiol ; 326(4): F563-F583, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299215

RESUMO

Despite known drawbacks, rodent models are essential tools in the research of renal development, physiology, and pathogenesis. In the past decade, rodent models have been developed and used to mimic different etiologies of acute kidney injury (AKI), AKI to chronic kidney disease (CKD) transition or progression, and AKI with comorbidities. These models have been applied for both mechanistic research and preclinical drug development. However, current rodent models have their limitations, especially since they often do not fully recapitulate the pathophysiology of AKI in human patients, and thus need further refinement. Here, we discuss the present status of these rodent models, including the pathophysiologic compatibility, clinical translational significance, key factors affecting model consistency, and their main limitations. Future efforts should focus on establishing robust models that simulate the major clinical and molecular phenotypes of human AKI and its progression.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Animais , Humanos , Roedores , Modelos Animais de Doenças , Insuficiência Renal Crônica/patologia , Rim/patologia , Injúria Renal Aguda/patologia
8.
Hum Genet ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369676

RESUMO

Cisplatin-induced acute kidney injury (CP-AKI) is a common complication in cancer patients. Although ferroptosis is believed to contribute to the progression of CP-AKI, its mechanisms remain incompletely understood. In this study, after initially processed individual omics datasets, we integrated multi-omics data to construct a ferroptosis network in the kidney, resulting in the identification of the key driver TACSTD2. In vitro and in vivo results showed that TACSTD2 was notably upregulated in cisplatin-treated kidneys and BUMPT cells. Overexpression of TACSTD2 accelerated ferroptosis, while its gene disruption decelerated ferroptosis, likely mediated by its potential downstream targets HMGB1, IRF6, and LCN2. Drug prediction and molecular docking were further used to propose that drugs targeting TACSTD2 may have therapeutic potential in CP-AKI, such as parthenolide, progesterone, premarin, estradiol and rosiglitazone. Our findings suggest a significant association between ferroptosis and the development of CP-AKI, with TACSTD2 playing a crucial role in modulating ferroptosis, which provides novel perspectives on the pathogenesis and treatment of CP-AKI.

9.
Am J Physiol Cell Physiol ; 326(3): C935-C947, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284121

RESUMO

The molecular basis of renal interstitial fibrosis, a major pathological feature of progressive kidney diseases, remains poorly understood. Autophagy has been implicated in renal fibrosis, but whether it promotes or inhibits fibrosis remains controversial. Moreover, it is unclear how autophagy is activated and sustained in renal fibrosis. The present study was designed to address these questions using the in vivo mouse model of unilateral ureteral obstruction and the in vitro model of hypoxia in renal tubular cells. Both models showed the activation of hypoxia-inducible factor-1 (HIF-1) and autophagy along with fibrotic changes. Inhibition of autophagy with chloroquine reduced renal fibrosis in unilateral ureteral obstruction model, whereas chloroquine and autophagy-related gene 7 knockdown decreased fibrotic changes in cultured renal proximal tubular cells, supporting a profibrotic role of autophagy. Notably, pharmacological and genetic inhibition of HIF-1 led to the suppression of autophagy and renal fibrosis in these models. Mechanistically, knock down of BCL2 and adenovirus E1B 19-kDa-interacting protein 3 (BNIP3), a downstream target gene of HIF, decreased autophagy and fibrotic changes during hypoxia in BUMPT cells. Together, these results suggest that HIF-1 may activate autophagy via BNIP3 in renal tubular cells to facilitate the development of renal interstitial fibrosis.NEW & NOTEWORTHY Autophagy has been reported to participate in renal fibrosis, but its role and underlying activation mechanism is unclear. In this study, we report the role of HIF-1 in autophagy activation in models of renal fibrosis and further investigate the underlying mechanism.


Assuntos
Nefropatias , Obstrução Ureteral , Camundongos , Animais , Obstrução Ureteral/complicações , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Fator 1 Induzível por Hipóxia , Nefropatias/patologia , Hipóxia , Autofagia/genética , Fibrose , Cloroquina/farmacologia
10.
Adv Healthc Mater ; : e2303267, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198534

RESUMO

Efferocytosis, mediated by the macrophage receptor MerTK (myeloid-epithelial-reproductive tyrosine kinase), is a significant contributor to cardiac repair after myocardial ischemia-reperfusion (MI/R) injury. However, the death of resident cardiac macrophages (main effector cells), inactivation of MerTK (main effector receptor), and overexpression of "do not eat me" signals (brake signals, such as CD47), collectively lead to the impediment of efferocytosis in the post-MI/R heart. To date, therapeutic strategies targeting individual above obstacles are relatively lacking, let alone their effectiveness being limited due to constraints from the other concurrent two. Herein, inspired by the application research of chimeric antigen receptor macrophages (CAR-Ms) in solid tumors, a genetically modified macrophage-based synergistic drug delivery strategy that effectively challenging the three major barriers in an integrated manner is developed. This strategy involves the overexpression of exogenous macrophages with CCR2 (C-C chemokine receptor type 2) and cleavage-resistant MerTK, as well as surface clicking with liposomal PEP-20 (a CD47 antagonist). In MI/R mice model, this synergistic strategy can effectively restore cardiac efferocytosis after intravenous injection, thereby alleviating the inflammatory response, ultimately preserving cardiac function. This therapy focuses on inhibiting the initiation and promoting active resolution of inflammation, providing new insights for immune-regulatory therapy.

11.
J Drug Target ; 32(3): 311-324, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38269853

RESUMO

The boom in cancer immunotherapy has provided many patients with a better chance of survival, but opportunities often come with challenges. Single immunotherapy is not good enough to eradicate tumours, and often fails to achieve the desired therapeutic effect because of the low targeting of immunotherapy drugs, and causes more side effects. As a solution to this problem, researchers have developed several nano Drug Delivery Systems (NDDS) to deliver immunotherapeutic agents to achieve good therapeutic outcomes. However, traditional drug delivery systems (DDS) have disadvantages such as poor bioavailability, high cytotoxicity, and difficulty in synthesis, etc. Herbal Polysaccharides (HPS), derived from natural Chinese herbs, inherently possess low toxicity. Furthermore, the biocompatibility, biodegradability, hydrophilicity, ease of modification, and immunomodulatory activities of HPS offer unique advantages in substituting traditional DDS. This review initially addresses the current developments and challenges in immunotherapy. Subsequently, it focuses on the immunomodulatory mechanisms of HPS and their design as nanomedicines for targeted drug delivery in tumour immunotherapy. Our findings reveal that HPS-based nanomedicines exhibit significant potential in enhancing the efficacy of cancer immunotherapy, providing crucial theoretical foundations and practical guidelines for future clinical applications.


Assuntos
Sistemas de Liberação de Fármacos por Nanopartículas , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos , Imunoterapia , Neoplasias/tratamento farmacológico , Polissacarídeos
12.
Talanta ; 270: 125634, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215585

RESUMO

Over the past decade, miniaturized optical emission spectrometry (OES) systems utilizing atmospheric pressure plasmas (APPs) as radiation sources have exhibited impressive capabilities in trace heavy metal analysis. As the core of the analytical system, APPs sources possess unique properties such as compact size, light weight, low energy requirement, ease of fabrication, and relatively low manufacturing cost. This critical review focuses on recent progress of APP-based OES systems employed for the determination of heavy metals. Influences of technical details including the sample introduction manner, the sampling volume, the sample flow rate, the pH of the solutions on the plasma stability and the intensity of analytical signals are comprehensively discussed. Furthermore, the review emphasizes the analytical challenges faced by these techniques and highlights the opportunities for further development in the field of heavy metal detection.

14.
Hepatology ; 79(2): 425-437, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611260

RESUMO

BACKGROUND AND AIMS: The predominantly progressive, indeterminate, and predominantly regressive (P-I-R) classification extends beyond staging and provides information on dynamic changes of liver fibrosis. However, the prognostic implication of P-I-R classification is not elucidated. Therefore, in the present research, we investigated the utility of P-I-R classification in predicting the on-treatment clinical outcomes. APPROACH AND RESULTS: In an extension study on a randomized controlled trial, we originally enrolled 1000 patients with chronic hepatitis B and biopsy-proven histological significant fibrosis, and treated them for more than 7 years with entecavir-based therapy. Among the 727 patients with a second biopsy at treatment week 72, we compared P-I-R classification and Ishak score changes in 646 patients with adequate liver sections for the histological evaluation. Progressive, indeterminate, and regressive cases were observed in 70%, 17%, and 13% of patients before treatments and 20%, 14%, and 64% after 72-week treatment, respectively, which could further differentiate the histological outcomes of patients with stable Ishak scores. The 7-year cumulative incidence of HCC was 1.5% for the regressive cases, 4.3% for the indeterminate cases, and 22.8% for the progressive cases ( p <0.001). After adjusting for age, treatment regimen, platelet counts, cirrhosis, Ishak fibrosis score changes, and Laennec staging, the posttreatment progressive had a HR of 17.77 (vs. posttreatment regressive; 95% CI: 5.55-56.88) for the incidence of liver-related events (decompensation, HCC, and death/liver transplantation). CONCLUSIONS: The P-I-R classification can be a meaningful complement to the Ishak fibrosis score not only in evaluating the histological changes but also in predicting the clinical outcomes.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Antivirais/uso terapêutico , Neoplasias Hepáticas/patologia , Cirrose Hepática/patologia , Fígado/patologia , Hepatite B Crônica/complicações , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/patologia , Fibrose , Biópsia/efeitos adversos
15.
Adv Sci (Weinh) ; 11(7): e2306704, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072665

RESUMO

The pathogenesis of Diabetic kidney disease(DKD) involves pathological changes in both tubulo-interstitium and the glomerulus. Surprisingly, tubulo-interstitial fibrosis (TIF), does not develop significantly until the late stage of DKD. Here, it is demonstrated that PR domain-containing 16 (PRDM16) is a key to the low level of TIF in DKD. In the experiments, PRDM16 is upregulated in high glucose-treated renal tubular cells, DKD mouse kidneys, and renal biopsy of human DKD patients via activation of NF-κB signal pathway. High glucose-induced expression of fibrotic proteins in renal tubular cells is suppressed by PRDM16. Mechanistically, PRDM16 bound to the promotor region of Transient receptor potential ankyrin 1 (TRPA1) to transactivate its expression and then suppressed MAPK (P38, ERK1/2) activation and downstream expression of TGF-ß1. Knockout of PRDM16 from kidney proximal tubules in mice blocked TRPA1 expression and enhanced MAPK activation, TGF-ß1 production, TIF development, and DKD progression, whereas knock-in of PRDM16 has opposite effects. In addition, overexpression of PRDM16 or its induction by formononetin ameliorated renal dysfunction and fibrosis in db/db diabetic mice. Finally, the above finding are detected in renal biopsies of DKD patients. Together, these results unveil PRDM16/TRPA1 as the mechanism responsible for the low level of TIF in the early stage of DKD by suppressing and TGF-ß1 expression.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Humanos , Camundongos , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Proteínas de Ligação a DNA/metabolismo , Fibrose , Glucose , Camundongos Knockout , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Canal de Cátion TRPA1
16.
Eur Heart J ; 45(9): 669-684, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085922

RESUMO

BACKGROUND AND AIMS: Survivors of acute coronary syndromes face an elevated risk of recurrent atherosclerosis-related vascular events despite advanced medical treatments. The underlying causes remain unclear. This study aims to investigate whether myocardial infarction (MI)-induced trained immunity in monocytes could sustain proatherogenic traits and expedite atherosclerosis. METHODS: Apolipoprotein-E deficient (ApoE-/-) mice and adoptive bone marrow transfer chimeric mice underwent MI or myocardial ischaemia-reperfusion (IR). A subsequent 12-week high-fat diet (HFD) regimen was implemented to elucidate the mechanism behind monocyte trained immunity. In addition, classical monocytes were analysed by flow cytometry in the blood of enrolled patients. RESULTS: In MI and IR mice, blood monocytes and bone marrow-derived macrophages exhibited elevated spleen tyrosine kinase (SYK), lysine methyltransferase 5A (KMT5A), and CCHC-type zinc finger nucleic acid-binding protein (CNBP) expression upon exposure to a HFD or oxidized LDL (oxLDL) stimulation. MI-induced trained immunity was transmissible by transplantation of bone marrow to accelerate atherosclerosis in naive recipients. KMT5A specifically recruited monomethylation of Lys20 of histone H4 (H4K20me) to the gene body of SYK and synergistically transactivated SYK with CNBP. In vivo small interfering RNA (siRNA) inhibition of KMT5A or CNBP potentially slowed post-MI atherosclerosis. Sympathetic denervation with 6-hydroxydopamine reduced atherosclerosis and inflammation after MI. Classical monocytes from ST-elevation MI (STEMI) patients with advanced coronary lesions expressed higher SYK and KMT5A gene levels. CONCLUSIONS: The findings underscore the crucial role of monocyte trained immunity in accelerated atherosclerosis after MI, implying that SYK in blood classical monocytes may serve as a predictive factor for the progression of atherosclerosis in STEMI patients.


Assuntos
Aterosclerose , Infarto do Miocárdio , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Animais , Camundongos , Monócitos , Imunidade Treinada
17.
Innovation (Camb) ; 5(1): 100539, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38089566

RESUMO

Synchrotron tomography experiments are transitioning into multifunctional, cross-scale, and dynamic characterizations, enabled by new-generation synchrotron light sources and fast developments in beamline instrumentation. However, with the spatial and temporal resolving power entering a new era, this transition generates vast amounts of data, which imposes a significant burden on the data processing end. Today, as a highly accurate and efficient data processing method, deep learning shows great potential to address the big data challenge being encountered at future synchrotron beamlines. In this review, we discuss recent advances employing deep learning at different stages of the synchrotron tomography data processing pipeline. We also highlight how applications in other data-intensive fields, such as medical imaging and electron tomography, can be migrated to synchrotron tomography. Finally, we provide our thoughts on possible challenges and opportunities as well as the outlook, envisioning selected deep learning methods, curated big models, and customized learning strategies, all through an intelligent scheduling solution.

18.
Environ Sci Technol ; 57(50): 21050-21060, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38055865

RESUMO

Microplastics (MPs) are ubiquitous environmental pollutants produced through the degradation of plastic products. Nanoplastics (NPs), commonly coexisting with MPs in the environment, are submicrometer debris incidentally produced from fragmentation of MPs. We studied the biophysical impacts of MPs/NPs derived from commonly used commercial plastic products on a natural pulmonary surfactant extracted from calf lung lavage. It was found that in comparison to MPs/NPs derived from lunch boxes made of polypropylene or from drinking water bottles made of poly(ethylene terephthalate), the MP/NP derived from foam packaging boxes made of polystyrene showed the highest adverse impact on the biophysical function of the pulmonary surfactant. Accordingly, intranasal exposure of MP/NP derived from the foam boxes also induced the most serious proinflammatory responses and lung injury in mice. Atomic force microscopy revealed that NP particles were adsorbed on the air-water surface and heteroaggregated with the pulmonary surfactant film. These results indicate that although the incidentally formed NPs only make up a small mass fraction, they likely play a predominant role in determining the nano-bio interactions and the lung toxicity of MPs/NPs by forming heteroaggregates at the alveolar-capillary interface. These findings may provide novel insights into understanding the health impact of MPs and NPs on the respiratory system.


Assuntos
Poluentes Ambientais , Surfactantes Pulmonares , Poluentes Químicos da Água , Animais , Camundongos , Microplásticos , Plásticos , Polipropilenos
19.
Genes (Basel) ; 14(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38137008

RESUMO

The accumulation of arsenic (As) in rice poses a significant threat to food safety and human health. Breeding rice varieties with low As accumulation is an effective strategy for mitigating the health risks associated with arsenic-contaminated rice. However, the genetic mechanisms underlying As accumulation in rice grains remain incompletely understood. We evaluated the As accumulation capacity of 313 diverse rice accessions grown in As-contaminated soils with varying As concentrations. Six rice lines with low As accumulation were identified. Additionally, a genome-wide association studies (GWAS) analysis identified 5 QTLs significantly associated with As accumulation, with qAs4 being detected in both of the experimental years. Expression analysis demonstrated that the expression of LOC_Os04g50680, which encodes an MYB transcription factor, was up-regulated in the low-As-accumulation accessions compared to the high-As-accumulation accessions after As treatment. Therefore, LOC_Os04g50680 was selected as a candidate gene for qAs4. These findings provide insights for exploiting new functional genes associated with As accumulation and facilitating the development of low-As-accumulation rice varieties through marker-assisted breeding.


Assuntos
Arsênio , Oryza , Humanos , Estudo de Associação Genômica Ampla , Arsênio/toxicidade , Arsênio/metabolismo , Melhoramento Vegetal , Locos de Características Quantitativas/genética
20.
J Agric Food Chem ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37916776

RESUMO

Several tobamoviruses cause substantial economic losses to tomato and pepper crops globally, especially the pepper mild mosaic virus (PMMoV), tomato brown rugose fruit virus (ToBRFV), tomato mosaic virus (ToMV), and tomato mottle mosaic virus (ToMMV). A fast and accurate detection method is essential for virus identification. An all-in-one reaction method combining a one-step reverse-transcription recombinase-aided amplification (RT-RAA) and CRISPR/Cas12a-based lateral flow assay in one mixture was developed to rapidly screen and accurately differentiate among these four tobamoviruses for field detection in tomato and pepper plants. With a generic RT-RAA primer set and a mix of four specific crRNAs, along with a portable metal incubator and the use of a crude extraction method, this method screened for PMMoV, ToBRFV, ToMV, and ToMMV concurrently in less than 1 h, enabling field workers to take action immediately. The accurate differentiation of these four viruses could be achieved by later adding a single specific crRNA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...